文档维护:Arvin

网页部署:Arvin

写在前面:本文旨在记录学习ROS过程中的一些重要知识概念和遇到的错误问题。主要参考赵虚左老师的ROS课程(第一个参考链接),由于赵老师用的noetic版本,而我用的是melodic版本,细节上可能会有所差异。

0

常用API

初始化

C++

1
2
3
4
5
6
7
8
9
10
11
12
13
/** @brief ROS初始化函数。
*
* 该函数可以解析并使用节点启动时传入的参数(通过参数设置节点名称、命名空间...)
*
* 该函数有多个重载版本,如果使用NodeHandle建议调用该版本。
*
* \param argc 参数个数
* \param argv 参数列表
* \param name 节点名称,需要保证其唯一性,不允许包含命名空间
* \param options 节点启动选项,被封装进了ros::init_options
*
*/
void init(int &argc, char **argv, const std::string& name, uint32_t options = 0);

Python

1
2
3
4
5
6
7
8
9
10
def init_node(name, argv=None, anonymous=False, log_level=None, disable_rostime=False, disable_rosout=False, disable_signals=False, xmlrpc_port=0, tcpros_port=0):
"""
在ROS msater中注册节点

@param name: 节点名称,必须保证节点名称唯一,节点名称中不能使用命名空间(不能包含 '/')
@type name: str

@param anonymous: 取值为 true 时,为节点名称后缀随机编号
@type anonymous: bool
"""

话题与服务相关对象

C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* \brief 根据话题生成发布对象
*
* 在 ROS master 注册并返回一个发布者对象,该对象可以发布消息
*
* 使用示例如下:
*
* ros::Publisher pub = handle.advertise<std_msgs::Empty>("my_topic", 1);
*
* \param topic 发布消息使用的话题
*
* \param queue_size 等待发送给订阅者的最大消息数量
*
* \param latch (optional) 如果为 true,该话题发布的最后一条消息将被保存,并且后期当有订阅者连接时会将该消息发送给订阅者
*
* \return 调用成功时,会返回一个发布对象
*
*
*/
template <class M>
Publisher advertise(const std::string& topic, uint32_t queue_size, bool latch = false)

回旋函数

C++

  • spinOnce()

    1
    2
    3
    4
    5
    6
    7
    8
    /**
    * \brief 处理一轮回调
    *
    * 一般应用场景:
    * 在循环体内,处理所有可用的回调函数
    *
    */
    ROSCPP_DECL void spinOnce();
  • spin()

    1
    2
    3
    4
    /** 
    * \brief 进入循环处理回调
    */
    ROSCPP_DECL void spin();

**相同点:**二者都用于处理回调函数;

**不同点:**ros::spin() 是进入了循环执行回调函数,而 ros::spinOnce() 只会执行一次回调函数(没有循环),在 ros::spin() 后的语句不会执行到,而 ros::spinOnce() 后的语句可以执行。

时间

C++

1.时刻

获取时刻,或是设置指定时刻:

1
2
3
4
5
6
7
8
9
10
ros::init(argc,argv,"hello_time");
ros::NodeHandle nh;//必须创建句柄,否则时间没有初始化,导致后续API调用失败
ros::Time right_now = ros::Time::now();//将当前时刻封装成对象
ROS_INFO("当前时刻:%.2f",right_now.toSec());//获取距离 1970年01月01日 00:00:00 的秒数
ROS_INFO("当前时刻:%d",right_now.sec);//获取距离 1970年01月01日 00:00:00 的秒数

ros::Time someTime(100,100000000);// 参数1:秒数 参数2:纳秒
ROS_INFO("时刻:%.2f",someTime.toSec()); //100.10
ros::Time someTime2(100.3);//直接传入 double 类型的秒数
ROS_INFO("时刻:%.2f",someTime2.toSec()); //100.30

2.持续时间

设置一个时间区间(间隔):

1
2
3
4
5
ROS_INFO("当前时刻:%.2f",ros::Time::now().toSec());
ros::Duration du(10);//持续10秒钟,参数是double类型的,以秒为单位
du.sleep();//按照指定的持续时间休眠
ROS_INFO("持续时间:%.2f",du.toSec());//将持续时间换算成秒
ROS_INFO("当前时刻:%.2f",ros::Time::now().toSec());

3.持续时间与时刻运算

为了方便使用,ROS中提供了时间与时刻的运算:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
ROS_INFO("时间运算");
ros::Time now = ros::Time::now();
ros::Duration du1(10);
ros::Duration du2(20);
ROS_INFO("当前时刻:%.2f",now.toSec());
//1.time 与 duration 运算
ros::Time after_now = now + du1;
ros::Time before_now = now - du1;
ROS_INFO("当前时刻之后:%.2f",after_now.toSec());
ROS_INFO("当前时刻之前:%.2f",before_now.toSec());

//2.duration 之间相互运算
ros::Duration du3 = du1 + du2;
ros::Duration du4 = du1 - du2;
ROS_INFO("du3 = %.2f",du3.toSec());
ROS_INFO("du4 = %.2f",du4.toSec());
//PS: time 与 time 不可以运算
// ros::Time nn = now + before_now;//异常

4.设置运行频率

1
2
3
4
5
6
ros::Rate rate(1);//指定频率
while (true)
{
ROS_INFO("-----------code----------");
rate.sleep();//休眠,休眠时间 = 1 / 频率。
}

5.定时器

ROS 中内置了专门的定时器,可以实现与 ros::Rate 类似的效果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
ros::NodeHandle nh;//必须创建句柄,否则时间没有初始化,导致后续API调用失败

// ROS 定时器
/**
* \brief 创建一个定时器,按照指定频率调用回调函数。
*
* \param period 时间间隔
* \param callback 回调函数
* \param oneshot 如果设置为 true,只执行一次回调函数,设置为 false,就循环执行。
* \param autostart 如果为true,返回已经启动的定时器,设置为 false,需要手动启动。
*/
//Timer createTimer(Duration period, const TimerCallback& callback, bool oneshot = false,
// bool autostart = true) const;

// ros::Timer timer = nh.createTimer(ros::Duration(0.5),doSomeThing);
ros::Timer timer = nh.createTimer(ros::Duration(0.5),doSomeThing,true);//只执行一次

// ros::Timer timer = nh.createTimer(ros::Duration(0.5),doSomeThing,false,false);//需要手动启动
// timer.start();
ros::spin(); //必须 spin

定时器的回调函数:

1
2
3
4
void doSomeThing(const ros::TimerEvent &event){
ROS_INFO("-------------");
ROS_INFO("event:%s",std::to_string(event.current_real.toSec()).c_str());
}

其他函数

在发布实现时,一般会循环发布消息,循环的判断条件一般由节点状态来控制,C++中可以通过 ros::ok() 来判断节点状态是否正常,而 python 中则通过 rospy.is_shutdown() 来实现判断,导致节点退出的原因主要有如下几种:

  • 节点接收到了关闭信息,比如常用的 ctrl + c 快捷键就是关闭节点的信号;
  • 同名节点启动,导致现有节点退出;
  • 程序中的其他部分调用了节点关闭相关的API(C++中是ros::shutdown(),python中是rospy.signal_shutdown())

另外,日志相关的函数也是极其常用的,在ROS中日志被划分成如下级别:

  • DEBUG(调试):只在调试时使用,此类消息不会输出到控制台;
  • INFO(信息):标准消息,一般用于说明系统内正在执行的操作;
  • WARN(警告):提醒一些异常情况,但程序仍然可以执行;
  • ERROR(错误):提示错误信息,此类错误会影响程序运行;
  • FATAL(严重错误):此类错误将阻止节点继续运行。

ROS中的头文件与源文件

自定义头文件调用

**需求:**设计头文件,可执行文件本身作为源文件。

流程:

  1. 编写头文件;
  2. 编写可执行文件(同时也是源文件);
  3. 编辑配置文件并执行。

自定义源文件调用

**需求:**设计头文件与源文件,在可执行文件中包含头文件。

流程:

  1. 编写头文件;
  2. 编写源文件;
  3. 编写可执行文件;
  4. 编辑配置文件并执行。

Python模块导入

文件A实现(包含一个变量):

1
2
#! /usr/bin/env python
num = 1000

文件B核心实现:

1
2
3
4
5
6
7
8
9
10
11
12
import os
import sys

path = os.path.abspath(".")
# 核心
sys.path.insert(0,path + "/src/plumbing_pub_sub/scripts")

import tools

....
....
rospy.loginfo("num = %d",tools.num)

参考资料:

【Autolabor初级教程】ROS机器人入门

古月居_GuYueHome: 享受机器人学习的乐趣 (gitee.com)